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Large-Scale Parameter Estimation in Low-Density Polyethylene Tubular Reactors

Victor M. Zavala and Lorenz T. Biegler*

Department of Chemical Engineering, Carnegie Mellon dénsity, 5000 Forbes #enue, Pittsburgh,
Pennsydania 15213

We propose a simultaneous approach for the solution of the associated DAE-constrained parameter estimation
problem. Parameter estimation is an essential task in the development and on-line update of first-principles
models for low-density polyethylene tubular reactors, consisting of nonlinear and stiff differealti@braic
equations (DAE). Our approach discretizes the reactor model equations in space, leading to a large-scale
nonlinear program (NLP) that can be solved efficiently with state-of-the-art general-purpose NLP solvers. In
doing so, more efficient estimation strategies can be considered, enabling the solution of challenging estimation
problems including multiple data and large parameters sets. This approach is efficient in handling advanced
regression problems such as the errors-in-variables-measured (EVM) formulation. The methodology is fast,
robust, and reliable and can be used both for off-line and on-line purposes. Moreover, substantial improvements
on the reactor model predictions have been obtained over previous approaches, making the model amenable
for real-time optimization and control tasks.

1. Introduction large-scale models differ in the mechanisms postulated to
describe the polymerization kineti€she prediction approach

of the final polymer propertiesthe prediction methods of the
reacting mixture physical properti#gassumptions regarding the
flow regime, different approaches for taking into account the
reactor variability?1° and, finally, the kinetic and transport
parameters used for model validatibA.common observation

The chemical industry faces a challenging and competitive
market where high-quality commodity polymers play a central
role. These polymers are produced in high-throughput and
flexible continuous processes which produce a multitude of
polymer grades with tight quality specifications. Stringent
performance conditions coupled with high operating costs havein all these studies is the lack of a consistent database of
motivated the application of advanced real-time optimization arameters that can be used for model development. Therefore
and control schemes. These applications require the developmeni '

f comprehensive first-princioles models with rate predi it is often necessary to re-estimate these parameters using
of comprenensive first-principlies moaels accurate predic experimental data from the particular laboratory or industrial
tive capabilities. In all of these developments, a considerable

. . Lo e . reactor under study, a complicated and time-consuming’task.
amount of time is spent in discriminating among candidate Vs p. . gth
models and determining the associated parameters. Well-known parameter estimation theory and methods have

Low-density polyethylene (LDPE) grades are produced in been afle'ed onl_y rece.”“y to Iarge-scale_ flgorous process
processes with high-pressure, multizone tubular reactors. Reactm°de|§13:715and‘ In_particular, to polymerization reactors
ing in the gas phase at high temperature (2300 °C) and modelst In the particular case of LDPE tubular reactor
pressure (15003000 atm), ethylene and a comonomer are models, the parameter estimation problem turns out to be so

copolymerized through a free-radical mecharlismthe pres- I;rgedand (r:]on;plexltféat it i? Esuk‘?‘”y ;implifihedrhg;ing heurilstics
ence of complex mixtures of peroxide initiators. A typical ased on the knowleage of the kinetic mecha S aresuft,

tubular reactor can be described as a jacketed, multizone devicd'€S€ Nonsystematic approaches may yield parameters with large

with a predefined sequence of reaction and cooling Zones_confi_de_nce regions, 'e%ding to Ia_ck of robustn_ess in model
Different configurations of monomer, comonomer, and initiator pred_lctlon§ over the desired operating range or different reactor
mixtures enter in feed and multiple sidestreams and are selectednfigurations.
to maximize the reactor productivity and obtain the desired  Although essential for systematic model development, the
polymer properties. The total reactor length ranges between 0.5application of robust and efficient parameter estimation tech-
and 2 km, while its internal diameter does not exceee gD niques to tubular polymerization reactors models has been
mm. A schematic representation of a typical tubular reactor is limited due to several factors. First, distributed reactor models
presented in Figure 1. The final end-use properties of the comprise large sets of complex differenti@lgebraic equations
different LDPE grades are mainly correlated to the polymer (DAESs). Accordingly, the associated parameter estimation
density and macromolecular properties. Different additives or Problem is formulated as a large-scale DAE-constrained opti-
chain-transfer agents (CTAs) are added to the axial feed streamgnization problem. The second factor has been the lack of
to control the polymer melt index. In general, the required efficient strategies and numerical algorithms able to handle these
polymer properties are enforced through complex recipes thatcomputationally intensive problems. Finally, estimation prob-
try to keep the reactor under strict operating conditions. lems must be solved using scarce and sometimes noninformative
Mathematical modeling of industrial LDPE tubular reactors industrial data, giving rise to ill-posed problems with nonunique
is a fundamental but difficult task that motivates a huge amount solutions.
of research effort. A number of comprehensive steady-state In this work, we present an efficient approach for the solution
tubular reactor models are available in the literafufeThese of parameter estimation problems arising from the development
and on-line update of first-principles models for LDPE tubular
*To whom correspondence should be addressed. E-mail: 1b01@ Polymerization reactors. The main idea is to formulate a general
andrew.cmu.edu. Phone: (412) 26832, multiset parameter estimation problem with a maximum-
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Figure 1. Schematic representation of a typical LDPE tubular reactor.

likelihood objective function subject to a large-scale DAE 2.1. Model Structure. The first-principles tubular reactor
model. The estimation problem is discretized in space, giving model describes the gas-phase free-radical copolymerization of
rise to large-scale, structured, and highly nonlinear NLPs. The ethylene with a comonomer (vinyl acetate in this work) in the
resulting optimization problems are then solved using the state- presence of several different initiators and chain-transfer agents
of-the-art general-purpose nonlinear program (NLP) interior- (CTAs) under supercritical conditions. The mechanism postu-
point algorithm, IPOPTS lated to describe the copolymerization kinetics is presented in

Our study is based on a comprehensive tubular reactor modelTable 1. Here, the symbolswith i €{1, ..., N}, R, My, My,
obtained from extensive literature studies. For the estimation and § with i €{1, ..., Ns} denote the initiators, radicals,
problem, we consider multiple sets of industrial data containing monomer, comonomer, and chain-transfer agent (CTA) mol-
snapshots of the operating conditions of different full-scale ecules, respectively. The symbplrepresents the efficiency of
industrial reactors configurations that produce several polymer initiator i. The symbolsP; s represent “live” polymer chains
grades. The parameter estimation problem is analyzed from twoending with a monomer unitwith r monomer units ands
perspectives. First, we consider estimation of the on-line comonomer units. SimilarlyQr s are live polymer chains with
adjustable parameters. These parameters are estimated to matdh S degrees of polymerization but ending with a comonomer
the reactor temperature profile at different instances of the unitandM;, sare “dead” polymer chains. The respective reaction
operation horizon. Next, we consider the estimation of intrinsic rates for the monomers, initiators, chain-transfer agents, and
kinetic parameters that match the reactor conversion and thelive and dead polymer chains can be obtained by combining
macromolecular properties of different grades. An important the reaction rates of the elementary reactions describing their
observation is that, if industrial data are used in the estimation production and consumption. Here, we recognize that a complete
problem, on-line adjustable and kinetic parameters should bedescription of the polymer chain molecular weight distributions
estimated simultaneously, giving rise to large, complicated requires an extremely large number of population balances for
estimation problems. This leads to single estimation problems the polymer chains. To avoid this, the method of single
formulated with multiple data sets, that obtain reliable param- moment&®is used to describe macromolecular properties of the
eters with tight confidence intervals. Consequently, the model copolymer. The method of moments is based on the statistical
is robust and accurate in predicting the behavior of different representation of the polymer average molecular weights and
reactors over a wide range of conditions. Finally, we show that the compositional properties in terms of the leading moments
advanced nonlinear regression methods can be applied efficientlyof the number chain-length distributions of the live and dead
to large-scale rigorous process models with this approach. Topolymer chains. In this model, the univariate number chain-
illustrate this, we consider both standard least-squares and errorslength distributions forPrs, Qrs, and M;s are considered.
in-variables-measured (EVM) formulations for the solution of Accordingly, the moments of the number chain-length distribu-
the parameter estimation problem. tions are defined as

The next section presents a comprehensive first-principles © o

LDPE reactor model, followed by formulation of the parameter = r+9'R(r.9 nefo. 1 icl1
estimation problems in section 3. The strategy followed for the n r; FZ( R 9) {0.1.2, {1.2

solution of the DAE-constrained optimization problem is 1)
discussed in section 4. We discuss an efficient simultaneous S

approach based on orthogonal collocation on finite elements. _ n

This strategy enables parameter estimation problems to be M= ;Fz(r +9D(rs ne{0,1,2 )

formulated as large-scale NLPs. Here, the general features of

the interior point algorithm used for their solution are analyzed whereRY(r, s) = [P, 4, R¥(r, s) = [Q:.d, and D(r, s) = [M;4.

from a parameter estimation point of view. In section 5, we With this, the number- and weight-average molecular weights,
demonstrate the capabilities of the proposed approach forthe degrees of long-chain branching (LCB) and short-chain
estimation of large sets of on-line adjustable and kinetic pranching (SCB) per 1000 carbon atoms can be expressed in

parameters for the LDPE reactor model using industrial steady- terms of the leading moments of the univariate length-chain
state data. Finally, the last section presents a summary and seistribution.

of conclusions, along with discussion of future work to deal A typical LDPE tubular reactor consists of a complex

with challenging parameter estimation problems. configuration of interconnected reaction and cooling zones.
Multiple injection points of initiator mixtures, monomer, and
2. Reactor Mathematical Model CTAs are found along the reactor. The model complexity is

often reduced by making some general validated assumptions
We consider a comprehensive first-principles LDPE tubular such as the following: the reacting mixture forms a single
reactor model described in references 4 and 17. Due to thesupercritical phase, plug flow is observed along the reactor, and
complexity of the equations and the lack of space, only the net production rates of the radicals and live polymer chains are
general features of the model are described. negligible (quasi-steady-state assumptib@pnsidering this, a
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Table 1. Free-Radical Copolymerization Mechanism of Ethylene with a Comonomer

Initiator(s) Decomposition

Incorporation of CTAs

ikdi .
2R i=1,N,

Ksi1 .
Pr,s + S - F)r+1,s =1, NS

Kspiz .
Qr,s + S — Qr,s+1 =1, NS

Chain Initiation

Termination by Combination

R + Mli Pio

R + Mzi Qo1

ktcll

rs + Px,y Mr+x,s+y
ktclz

Pr,s + Qx,y Mr+x,s+y

kthZ
Qr,s + Qx,y - Mr+x,s+y

P

Chain Propagation

Termination by Disproportionation

Ko11
Pr,s + Ml - Pr+1,5

Ko12
Pr,s + M2 - Qr,s+1

k,
p21
Qr,s + Ml Pr+1,s

Ko22
Qr,s +M,— Qr,s+l

Y

Xy rs Xy

P

rs

td12

K
PstQy— M tM

rs xy

—
Kigz2

Qr,s + Qx,y Mr,s + Mx,y

Chain Transfer to Monomer

Backbiting

Kima1
Pr,s + Ml Pl,O + Mr.s

kimlz
Pr,s + I\/|2 QO,l + Mr,s

kfmzl
Qr,s + Ml I:)1,0 + Mr,s

kfmzz
Qr,s + MZ QO,l + Mr,s

Ko
PT,S — PI',S or QI’,S

Kno
Pr,s - Qr,s or Pr,s

Chain Transfer to Polymer

[-Scission of Sec- and Tert-Radicals

M,

rs Xy Xy rs

=)

kfplz
rs + Mx,y Qx,y + Mr,s

kfp21

Qr,s + Mx,y% Px,y + Mr,s

P

kf 22
Qr,s + Mx,yi’ Qx,y + Mr,s

Ky

Prs™ M+ Py

rs
Kp o _

F)r,s—> Mr,s + QO,l
T

Pr,54> Mr,s + Pl,O

Ksp o _
Pr,si’ Mr,s + QO,:L

Chain Transfer to CTAs

Pot+S o Piot M i=1Ng

ks .
Qr,s+ S - Q0,1+ Mr,s = 1’ NS

set of steady-state differential molar balances describing the
evolution of the reacting mixture along each zone can be
derived. The molar flow rat&; for every componeni in the
mixture can be expressed in terms of the fluid velocityand

its molar concentratiolC;,
F = vAG

whereA is the reactor cross-sectional area at the given reactor
axial position. According to this, the design equations for each
reactor zone are given by the following set of differential and

algebraic equations:

Initiator(s)

B Ly E e N
dz p il y e N

Monomer and Comonomer

dFmi Fmi 2 i 2 i
= — J J
- v (inCR + ]kaji’lo + ;kfmji/l())

dz

(4)

ie{l,2
()
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Chain-Transfer Agent(s)

2 2
oS S Nk 0y i
& y (leks,/lﬁjzlksmlo) ic{1,...Ng (6)

Primary Radicals

A N
Fr= — (v ) 2nikyFy) (7)
(kllle_H(IZFm?) 1=
Energy Balances

dar
Cpa = (_AHrl)(kpllj‘(l) + kp21/1(2))|:m1/U +

dT,
(_AHrZ)(kplzlé + kpZZA(Z))FmZ/U + FcCch (8)

Fr

dT,
FCpe gy = TD(HTC)(T, — T) ©)

Momentum Equation

2
dap_ . Pm? 1
dz  °" D, 101325 (10)
Long-Chain Branching (LCB) and Short-Chain Branching
(SCB)
1 dFLCB 2
Z(kfpll + kfp|2)/10ul (11)
v dFSCB i 1
;d_ = U( kblﬂ’ ) +— Z(ksgl;{ + ksnzlo)FSJ (12)

Dead Polymer Chains Moments

I A ZZ"mu%% ﬂlzjzkfpu/l'

(13)
1 dF;ll 2
A d Cm.(zkpﬂf1 (14)
1 dF 2

A A Zk""ﬂ o Z ZW A (1)

where

2 Ns 2 )
A= Zkfmijcmj + stjicq' + Zktdij% +
i= i= , i=
Zkfpijﬂl + kﬁi + k/'ﬂ ie{1,2 (16)
=

Live Polymer Chain Moments

G*
Fio=a & 17)
F.=aF,, (18)

Bll“* AT7
F111 = A BB, (29)
-I5— Bzil
I:,112 =UA——— A, (20)
where
— (kfm12 + kpl?)FmZ + kfplZF,ul (21)

(kfm21 + kpZJ)le + kprlFul

E = (Kg11 T Kic1a) T 2a(kigo + Kie1o) + az(ktd22+ Kic22) 22)

G* = (K1Fm1 + KoFm2Fr (23)

2
~(KpyCrmp + Ay + ka,-ﬂo) (24)
P

2
A= _(klele + A+ Zktczj/ljo) (25)
=

B, = klele (26)

B,= kp12cm2 (27)
I[T= (kCr + ) Kiiidh + kp--/I'O)C -
i i ]Z miji ]Z ji mi

Ns Ns 2
%(;kqicsj + ;ksg'icsj) + #z(;kfpji/vo) + (k/ii + k/ji’)/llo
(28)

Here, the fluid velocity is calculated from the total molar
flow rate and the mixture density at the corresponding operating
conditions. It is important to notice that the primary radicals
and the live polymer moment flow rates are algebraic variables.
From the schematic representation of the reactor, we can see
that the initial conditions of the differential equations are
determined from material balances at the axial feed points.

Macromolecular properties of the polymer can be obtained
in terms of the leading moments of the univariate chain-length
distributions. Accordingly, the polymer number- and weight-
average molecular weights and polydispersity are given by

F,ul
MW, = MW, == (29)
10
Fu2
MW, = MW, = (30)
ul
_ w
PDI=

where MW is the average molecular weight of a building unit
in the polymer chain. The number of short- and long-chain
branches per 1000 atoms can be obtained from

I:LCB

LCB =500 Fo

(31)
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Fscs As illustrated in Figure 1, a number of sidestream feeds of

SCB= 5007 (32) initiator mixtures or cocktails are distributed along the reactor.

u At each feed point, a typical mixture can include up to four

and finally, the polymer densitypo is correlated to the number _di_ff_erent initiators with different chemical properties. These
of short-chain branches per 1000 carbon atoms, initiators decompose to generate the radicals that start the

polymerization. The initiator decomposition reactions include

Ppol = Co T C;SCB (33) sets of complex reaction subnetworks involving the formation
of highly active intermediate species that can react among each

wherecoy andc, are correlation parameters. other or with impurities in the reacting mixture before generating

The accuracy of the tubular reactor model depends strongly the desired radicals. Thus, there is an efficiency faafor
on the appropriate prediction of the reacting mixture properties. associated with the decomposition of each initiator. These
Most of the model complexity comes from the large number of initiator efficiencies are strongly dependent on a large number
algebraic equations required for the calculation of the mixture of factors such as the reacting mixture temperature and pressure,
physical, thermodynamic, and transport properties. The proper-the degree of mixing at the feed points, and the presence of
ties that have more influence on the model accuracy are theother species such as impurities or CTAs. Moreover, the
mixture density, heat capacity, and viscosity. The gas-phaseefficiency of an individual initiator might vary with its
density and heat capacity are obtained by means of a generalizedoncentration in the reacting mixtut¢2 In LDPE tubular
correlation, based on a three-parameter corresponding stateseactors, wide variations of the reacting mixture temperature,
model!® while the rest of the properties are obtained from pressure, composition, and physical properties are observed. As
complex semiempirical correlations. All the correlations used a consequence, wide variations of the efficiencies are expected
have been validated experimentally and are reported elsevhere.as well along the reactor and over time due to the accumulation
In summary, a typical tubular reactor model with aroune-10  of impurities. To predict the initiator efficiencies observed in
13 zones can contain up to 30800 ordinary differential  LDPE reactors, these can be modeled as parallel reactions with
equations (ODEs) and 108@000 algebraic equations. Thisis  given decomposition constants that generate undesired spe-
a highly nonlinear, stiff large-scale DAE model which is cies210 Alternatively, the initiator efficiency for each reaction
computationally expensive and requires a robust and efficient can be estimated for each reaction zone in order to match the
solution algorithm. plant reactor temperature profile. Previous studies have shown
2.2 Model Parameters.One of the most difficult problems  satisfactory results using this approach. To simplify the param-
in simulating the operation of high-pressure LDPE reactors is eter estimation task, it is usually assumed that there is a common
the selection of appropriate values for the kinetic parameters. efficiency for all the initiators in the mixtur€. While this
Under general assumptions, model equations do not depend orassumption provides sufficiently accurate model predictions, it
the absolute values of the kinetic rate constants but on predefineds expected that the estimation of the individual initiator
ratios of these parametetsHowever, among literature studies, efficiencies will result in a better match of the plant reactor
the actual ratios and values of the kinetic constants differ temperature profile. This is the approach followed in this work.
sometimes by orders of magnitude. Furthermore, it is well-
known that kinetic and transport phenomena mask each otherz. parameter Estimation Problem Formulation
in polymerization reactor&. As a result, it is still difficult to ) o
find a reliable and consistent set of parameters for the model at N €ach zone, the reactor model is composed of individual
hand and, obviously, the best approach to tackle this problemsets of differential and algebraic equations describing the
is to estimate the parameters using the detailed reactor modefVvolution of the reacting mixture and cooling agent temperatures.
to match industrial reactor data. These individual sets are connected through balances at the feed
LDPE tubular reactors are also subject to persistent variability points, thus leading to a large, highly nonlinea}r system of DAEs
over the operating horizon. This requires the selection and on-for the reactor system. The overall model is defined by the
line estimation of adjustable parameters to account for this following:
variability. One of the most fundamental and complex problems

associated with the operation of LDPE tubular reactors is the = dy;(2) v(2), W (2, z p,IT| =0

severe and random fouling of the inner reactor wall due to a Il dz " e

continuous polymer buildup. This phenomenon is difficult to

predict by means of simple mechanistic modélFhere are Gly(@d, w3,z p, 1] =0

two simple engineering ways to handle this problem. The first

one involves the development of semiempirical correlations in y,(0)= q&(yj_l(zLj_l), Ffj)

terms of the Reynolds number, polymer composition, and some

other variables aiming at the prediction of the polymer fouling je{1, .. N2 (34)

resistance evolution along the react®iVhile this approach

has given relatively good results, the correlation is only useful Here, Fj(.) andG;j(.) are vectors of differential and algebraic
for the problem at hand and does not capture the evolution of equations, respectively, in zofes {1, ..., N4 where NZ is

the polymer buildup over time, which is the true motivation the number of zones in the reactor aknotes the axial position
for the on-line adjustment of the reactor moé&The second along each zone. The vectby(.) includes all the differential
approach includes two alternatives. If a detailed heat transfer material and energy balances in the model. The veGi¢)
model is available, the fouling resistance can be estimated forincludes all the kinetic Arrhenius-type equations, the expressions
each zone to match the plant reactor temperature piéiiere, defining the reacting mixture properties, and the balances at
it is assumed that the fouling resistance is constant along eachthe feed points along each zofjeThe symbolsy; and w;
zone. In the absence of a heat transfer model, the heat transferepresent vectors of differential and algebraic variables, respec-
coefficients (HTCs) can be defined directly as adjustable tively, for zonej. Here, the initial conditions;(0) for zonej
parameters in each zone. are obtained from material and energy balangesat the feed
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points relating the outlet stream of zofje— 1 given by 400 ODEs and 10062000 algebraic equations while a problem
Yi-1(z, ,) (Wwherez is the total length of zong and the side  with 5 data sets will contain 1562000 ODEs and 5000
feedsFy. Animportant observation here is that the reactor model 10 000 algebraic equations.
can be solved either sequentially, by solving the DAEs for one 3.2, Errors-in-Variables-Measured (EVM) Formulation.
zone at a time, or simultaneously, by including the coupled DAE The standard least-squares formulation considers errors that are
sets and the feed pOint balances of all the zones in a Singleonly present in the Output variables. This approach is well-
large problem. From the reactor model, we can distinguish known to give biased paramet@f27In the errors-in-variables-
between two different sets of parameters, the firstppetre measured (EVM) estimation formulation, on the other hand, both
parameters that correspoegclusiely to the particular zong errors in the input and output variables are taken into acc8unt.
this includes, for example, the heat transfer coefficient and the For complex systems with multiple inputs such as LDPE tubular
multiple initiator efficiencies of zong. The second set of  reactors, this approach is particularly useful in finding more
parametersI corresponds to those parameters that are defined gjiaple kinetic parameters. A major difficulty in solving this
for theentirereactor. These parameters include the kinetic rate problem is that, since the error is accounted for in all the
constants. Clearly, to capture the interaction of paramegers ariaples, the optimization is performed on both the parameters
andIl, a simultaneous solution of the overall reactor model is gng the inputs, thus leading to problems with many degrees of
needed. freedom. The general EVM formulation resembles that of the
3.1. Standard Least-Squares FormulationOnce the overall  standard least-squares (35) but, in this case, the inputs for every
reactor model is defined, a proper objective function needs to zonej in every data set are decision variables. Upon addition
be selected for the parameter estimation problem. In a standarcbf terms in the objective function that account for allowed

estimation problem, the model parametgrandIl are selected  adjustments from measured input variables, the parameter
to minimize the deviation between the predicted and the estimation problem becomes

measured values of a set of output variables. Here, a subset of

the output variables is defined from differential variables at NS Nz NM(j)

particular positions of a given zongfor example, the reacting min Z Z Z (Viy(@) — yﬁ"l i)TVyil(ykj(zi) — yk""] )+
mixture temperatures and the inlet and outlet cooling water Lpgu; &1 &1 & ' v ’ "
temperatures. A second subset of output variables corresponds NS

to the overall reactor conversion, polymer density, number- and Z (Winz — V\flfy'NZ)TVW{(Wk,NZ - V\I'xNz) +
weight-average molecular weights, and LCB at the reactor outlet. k=
Finally, the parameter estimation problem must include multiple NS Nz _

e : : ” (U, — UMV 1, — ul)
data sets describing the different operating conditions or reactor Z Z kj i/ Yu Wk Kj
configurations and corresponding values of their output vari- k=1I=
ables. This implies that the large-scale reactor model (35) needs s.t

to be defined for every data skte {1, ..., N§ where NS is dy, ()
the number of data sets. With this, the general parameter Fk'[ K
estimation problem can be stated as Il az

Gk,j[yk,,-(Z), Wij(z), Z, Py m =0

» Y (@, Wi (D), Z py, 1T, Uk,j] =0

NS Nz NM(j)
Irpri)n Z Z Z V() — y’IZ,Ij,i)TVyil(yk,j(zi) - yltﬂu) + Y%i(0) = ¢(ykrj_l(z'-k,jfl)’ Uj)
Pj k=1 =1 1=
NS je{l,.NZ, ke{l,..,NS (36)
Ty, -1
Z (Winz = Witn2) Vo Wz — W)
k= whereV,1is a positive-definite weighting matrix for the input
st variables andu; and u',lf'j are the calculated and measured
- values of the input variables. Notice that, in this formulation, a
F dYk,j(Z) b —0 multitude of side feeds (monomer, comonomer, CTAS) to the
kil gz » Yij (@, W (2, Z Py L Uy | = tubular reactoFy,; correspond to the input variables and appear
. explicitly in the connectivity equations. Some other inputs
Cij[¥%j (@, Wiij(2), 2 P, T = 0 included in the formulation are the reactor inlet pressure, feed,
Yii(0) = d(Via(z. ), Fi) and side stream temperatures and the cooling water flow rates
! ! ke and temperatures. This estimation approach corrects for mea-
je{1,...N2, ke{l,..,NS (35) surement errors on all these variables and is specially useful in

obtaining more reliable kinetic parameters. However, as ex-
where NM() is the number of measurement positions along pected, the degrees of freedom in the estimation problems
zonej, z are specific measurement locations along a particular increase linearly with the number of data sets. Consequently,
zonej, the symbol M denotes the actual plant measurements, solutions of EVM problems are often considered to be com-
andV, ! andV,,~* denote positive-definite weighting matrices putationally expensive.
for the output variables, withVy and V,, representing ap-
proximations of the corresponding covariance matrices.

The complexity of these problems relies on the fact that the
overall reactor model needs to be solved for every data set Two main approaches are used for the solution of the DAE-
included in the problem. Therefore, the number of DAE constrained optimization problems described in the previous
constraints increases linearly with the number of data sets. Forsection. First, the sequential or feasible-path approach separates
example, a problem with a single data set contains arounet 300 the model solution and optimization tasks. Instead, the optimizer

4. Solution Strategy
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updates the parameters and passes them to the DAE solveri, dy/dzq is the value of the first derivative in elementat
which integrates the model equaticierivative information collocation pointg, and Qg is an interpolation polynomial of
required by the optimizer can be obtained through the integration order NC that satisfies

of sensitivity or adjoint equations or by perturbatfdn33 Since

this approach requires the repeated solution of the DAE system, Q,0)=0 forqe{1,.., NG
it can be computationally demanding for large-scale models.
Furthermore, the optimization task becomes much more expen- Qfp) =9,, forqe{l,..,NG

sive for problems with multiple data sets, large parameter sets

or EVM formulations, thus requiring the decomposition of the - \yherep, is the location of theth collocation point within each
original problem through the solution of sequences of smaller glement andd,, is the Kronecker delta. Continuity of the

subproblems! Nevertheless, because of its relative simplicity gitferential profiles across elements is directly enforced by
in developing solution frameworks from standard optimization

and integration algorithms, this approach has been popular for NC dy

the solution of parameter estimation problems involving DAE y=Yy_,+h qu(l) _— (38)
models. Also, feasible path approaches are reliable even for stiff = dz

nonlinear DAEs, do not require special initialization strategies,

and can handle the complexity of the DAEs efficiently. Here, Radau collocation points are used because they stabilize
In the simultaneous or infeasible-path approach, the DAE the system more efficiently in the presence of high-index DAEs.

model solution and optimization tasks are completely coupled The algebraic profiles are approximated using a similar mono-
by performing a full discretization of the DAE model. With  mial basis representation
this, the DAE-constrained optimization problem is converted

into a large-scale, structured NLP problem. The most important NC [z—z )
advantage of this approach is that it avoids repeated solution w(2) = qu Wi (39)
of the large-scale model; it is solved only once, at the solution = h;

of the optimization problem. The recent potential of this
approach has been directly related to the availability of wherew;, represents the values of the algebraic variabjgs.
computational resources, optimization strategies, and high-is a Lagrange polynomial of order NC satisfying
performance scientific computing routines able to handle large-

scale optimization problen¥$ Nowadays, state-of-the-art, general- Y(p) =0, forgre{l, .. NG

purpose nonlinear programming algorithms based on sequential e ar

quadratic programming (SQP) and interior point (IP) methods
can efficiently handle NLP problems with over a million of
variables, thus enabling the solution of very challenging
optimization problem85-37 In particular, these amenities are
provided in IPOPT, a general-purpose nonlinear programming
interior point algorithmt® Furthermore, application of simul-
taneous approaches has become simple and efficient, due to th
availability of powerful modeling environments such as AMPL
and GAMS?38:3% Moreover, these platforms provide exact first
and second derivative information, thus enhancing the conver-
gence properties of the optimization algorithm. Simultaneous
approaches have been demonstrated for the solution of gener
DAE- and PDAE-constrained optimization problems in many
areas of science and engineering, have been shown to be robust
and efficient>4041and are superior to sequential approaches
on problems with many degrees of freed®n the other hand, s.it. ¢(x)=0

this approach requires careful initializations and might suffer X < X< X, (40)
from numerical difficulties associated with the discretization LT
of highly nonlinear and stiff DAEs.

4.1. Model Discretization. In this work, a simultaneous
approach based on orthogonal collocation on finite elements
was used for the solution of the parameter estimation problem.
This discretization scheme approximates the differential and
algebraic variable profiles by using a family of interpolation
polynomials. The entire axial length along each reactor zone is
divided into finite elementszf < z < ... < zyge = 7). Here,
we use a monomial basis representation for the differential
profiles® that is particularly attractive since it leads to better

Note that the number and length of the finite elements can be
adjusted according to the precision required in the approxima-
tion. This flexibility allows the size of the discretized reactor
model to be reduced. Also, the objective function in problem
(35)—(36) may include measurements located at positions that
may not coincide with the mesh. Rather, the calculated values
for the measurements can be interpolated along each zone to
the closest point in the mesh without losing much accuracy in
the results.
Upon substitution of the algebraic expressions {33p) in

35)—(36), these parameter estimation problems can be ex-

ressed as large-scale, structured NLP problems of the form

min f(x)

wherex € 9™ represents all the variables obtained from the
discretization of the DAE.

4.2. NLP Algorithm. The NLP problem (40) is solved using
IPOPT, which handles variable bounds by adding a barrier
function to the objective made up of logarithmic terms

nx

min 09 =09 = uly I =x.) + 3 In(x,” — x9)]

condition numbers of the Jacobian matrix st cx)=0 (42)
_ Th NCQ 274 ﬂ 37 whereu is a barrier parameter satisfying> 0. Under mild

Y@ =Yt h Zl a4 p dz (37) regularity conditions, solutions of (40) converge to the solution
i ! a of (40) asu — 044 At a particular value of:, the primal-dual

whereyi—; is the value differential variable evaluated at the optimality conditions of (41) resemble those of the original NLP
beginning of elemernit hy = z — z_1 is the length of the element  problem and are defined by



7874 Ind. Eng. Chem. Res., Vol. 45, No. 23, 2006

Vi) + V,.e()A — v +v,;=0 the number of positive, negative, and zero eigenvalues) can be
calculated from MA27 and monitored by the algorithfnAn
c(x)=0 important observation here is that, if the diagonal tedmand
(X — X )V, e—ue=0 d7 are zero at the solution, then the system has the correct inertia,
n positive andm negative eigenvalues, and the second order
Xy — X)V,e—ue=0 (42) sufficient conditions hold. From a statistical perspective, this

gives the important result that the parameters have been uniquely
whereX, X., Xy, VL, Vu € @™ are diagonal matrixes whose determined and the data are sufficiently informative.

diagonal entries are the componentsxpf_, xy,v., and vy, Finally, the algorithm implemented in IPOPT is robust and
respectivelye=1[1, 1, ..., 1T € #™ 1 is the vector of Lagrange efficient in solving problems with many degrees of freedom if
multipliers for the equality constraints; amg, vy € 9"Xis an exact second derivative information is providédhis is done

estimate of the multipliers for the bound constraints of the automatically through specialized automatic differentiation
original NLP problem. The optimality conditions can be solved routines implemented in AMPL. This feature is particularly
efficiently by applying Newton’s method, which requires the important for solving estimation problems with many param-
solution of a large and sparse linear system at each iterationeters, such as those arising from EVM formulations.

given by

Vi + 2 Vie(x) Ax | _
v'le(x) 0 Ad ]

5. Industrial Case Studies and Results

V,@(%) + Ve(X)A, We now consider the parameter estimation for the LDPE
(%) (43) reactor model. Several industrial data sets have been obtained,
which contain snapshots of the operating conditions of LDPE
tubular reactors including reactor pressure, temperature profiles,
inlet and outlet cooling jacket temperatures, reactor conversion,
and the entire set of flow rates, compositions, and temperatures
— (X — X Y I )RV of the axial feeds. The data sets also correspond to reactors with
2= XK= X)) VL + (X = X) Vg (44) different configurations (number and arrangement of cooling
— —_ywyt! _yy! and reaction zones, side feeds, CTAs, and initiator mixtures),
ViR = Vif0g) (4= X) e+ (X, = X “ue which also produce different homo- and copolymer grades with
different properties measured in terms of the macromolecular
polymer properties and density. General ranges of typical
number- and weight-average molecular weights and degrees of
LCB for each grade have been provided as well.
‘ = ‘ The main objective of the parameter estimation procedure is
AV = (X = X) (e + ViAx) — v (46) to find the best set of on-line adjustable parameters and kinetic
parameters that are best able to fit the reactor operating
The solution of linear system (43) is the core step of the conditions for all data sets provided.
optimization algorithm and requires most of the computational 5.1, Estimation of On-Line Adjustable Parameters.As a
time. This sparse linear system can be solved efficiently using first step in the estimation approach, we consider the estimation
robust factorization algorithms, such as the one implemented of the initiator efficiencies and heat transfer coefficients for
in Harwell routine MA27% It is worth emphasizing that  every data set provided. These parameters are usually updated
exploiting the sparsity of the linear system is fundamental in on-line to match the reactor temperature profile and the jackets
large-scale optimization. Moreover, ill-conditioning is encoun- jnlet and outlet temperatures and to predict the reactor conver-
tered in this particular application due to poor model Scaling sion and p0|ymer properties obtained. Obvious]y, a better
and high parametric sensitivity typical of polymerization reac- temperature profile match will be reflected directly in a more
tors. This is overcome through a user-specified scaling of the robust prediction of the reactor conversion and polymer proper-
model equations or automatically through equilibration algo- tjes.
rithms for the linear system, such as the one implemented in  For the base casewe consider a simplified estimation
Harwell subroutine MC19. approach used currently as an industry standard. The strategy
Global convergence of the algorithm is promoted using follows a sequential or feasible path approach as the one
a novel filter line search strategy. Line search methods require described in the previous section. In this strategy, a single
the Hessian matri¥dc = VyxLk + Zi to have strictly positive  efficiency is assumed for the entire initiator mixture in every
curvature in the null space of the linearized constraint gradients. reaction zone. Each of these efficiencies is assumed to be
Moreover, under the assumption thac(x) has full rank, the  constant along its corresponding zone. The heat transfer
projection ofHy onto the null space d¥y"c(x) is positive defi- coefficients (HTCs) are estimated for every cooling and reaction
nite if and only if the iteration matrix in (43) haspositive and  zone and are assumed to be constant along each zone as well.
mnegative eigenvalues. However, due to severe nonlinearity of Fyrthermore, the parameters are estimated sequentially along
the problem or noninformative data, respectively, the linear inde- the reactor, that is, solving for one zone at a time. This approach
pendence and positive curvature conditions may not hold at inter-js followed in most studies because the resulting estimation
mediate iterations. To correct for this, IPOPT adds diagonal prob|ems are re|ative|y small and Simp]e to sole.
correction terms to the (so-called KKT) matrix in (43), leadingto ~ On the other hand, in this work we propose to estimate the
efficiency, »;; for every initiator in the mixture fed to ever
Vi T Z+ 041 Vie(x) 47 reaction ioﬁé The effi?:/iencies are assumed to be constant Zlong
v,Tcx) ~0J 7

every zone. In addition, we estimate the HTCs for every zone,

which are assumed to be constant along their corresponding
for someds, d, > 0. To detect whether a modification of the zones as well. This approach leads to difficult problems with
Hessian is necessary, the inertia of this iteration matrix (i.e., many parameters. The set of parameters defining each zone can

whereLy is the Lagrangian function of the original NLP problem
(40) evaluated at iteratiok, Xy is defined by

and the bound multipliers are updated at each iteration from

Avf = (X — X)) (e — VEAX) — f (45)
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Figure 2. Plant and predicted temperature profiles using the base and the proposed estimation strategies for two different grades.

Table 2. Optimal Objective Function (OF) Values for the 40 T T T T T T .
Estimation Approaches Analyzed, Grades A and B Cases

grade OF-base OF-this work improvement

A 13262.28 6628.43 50.02 i 1
B 17 474.44 4458.40 74.48 e L

be estimated sequentially as well. However, due todinen-
stream interactiorof these parameters, it is recognized that the
entire set of on-line parameters must be estimated all-at-onc
for the entire reactor in a single, large estimation problem.
For the first case, we consider the match of two temperature £
profiles in different ranges describing the production of two L ]
different polymer grades (A and B) in the same reactor. Grade S e
A is a copolymer with high comonomer content and grade B is I ]
a homopolymer, both of them being of high molecular weight. | o ® o
The reactor under study contains 13 zones, but only the first o Base
few reaction zones are presented. In Figure 2, the plant and 3oz i : : : '
predicted profiles using the base and the proposed all-at-once Plant Conversion
estimation approaches are presented. It is evident that theFigure 3. Plant and predicted conversions for the estimation approaches
consideration of the individual efficiencies in the all-at-once analyzed, results for 20 different grades.
approach has a strong impact on the initial shaping of the profiles
in the reaction zones. This is attributed to the fact that the average conversion deviation was reduced from 12.1% using
individual contributions of the different initiators in the mixture ~ the base case estimation strategy to 2.5% with the proposed
are now considered at different temperature levels along eachall-at-once approach.
reaction zone. The improvements in the match are more notable Both temperature profiles presented in Figure 2 were obtained
from the results presented in Table 2. For both approaches, weby solving single-set parameter estimation problems. A total of
present the optimal values of the objective function, i.e., the 16 finite elements for the reaction zones, 2 finite elements for
sum of squares of deviations between the plant and predictedthe cooling zones, and 3 collocation points were used for the
temperatures along the reactor and jackets. It is clear that thediscretization of the reactor model. To test different initialization
proposed approach is superior in both cases. strategies for the resulting NLPs, additional experiments were
A direct consequence of having a better temperature profile carried out using the solutions obtained from the sequential or
match is the more accurate and consistent prediction of thefeasible path strategy. For the zone-by-zone estimation of the
overall reactor conversion, which plays a central role in the on-line parameters, this strategy required only-30 CPUs for
prediction of the polymer properties. In Figure 3, we present the on-line adjustable parameters. Around—80% of the
the conversion predicted by the model using the simplified solution time was spent for the integration of the reactor model
estimation strategy and the one proposed in this work againstequations for every zone. However, this approach was found
the plant conversion. Twenty different grades, considering wide to be expensive for the solution of the overall estimation problem
ranges of operating conditions and polymer properties are since, in this case, the entire reactor model needs to be integrated
presented in the graph. The proposed approach gives a morat every iteration, taking around 4.5 CPUs per iteration.
consistent and accurate prediction. For the twenty grades, theFollowing this reasoning, the approach was expected to become

dictedtgonversion
T
o
o
L

40
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Table 3. Computational Results for Single-Set NLP Problems, On-Line Parameter Estimation Case Studfes

grade constraints parameters LB UB iterations CPUs NZJ NZH
A 11 955 32 374 361 11 17.03 166 425 87 954
B 11 283 32 374 361 8 10.06 138 666 76 890

aLB = number of lower bounds; UB- number of upper bounds; NZ3 number of nonzeros in Jacobian; NZHnumber of nonzeros in Hessian.

Table 4. Confidence Intervals for On-Line Adjustable Parameters, Grade A Case

zone initiator 1 initiator 2 initiator 3 HTC
1 0.2294+ 0.0166 0.0736E 0.0067 0.1055E 0.0053 0.3120t 0.0138
2 0.2365+ 0.0258 0.0939: 0.0011 0.0903t 0.0082 0.2325: 0.0182
3 0.2051+ 0.0202 0.2028t 0.0156 0.152% 0.0143 0.327# 0.0153
4 0.3817+ 0.0327 0.197Gt 0.0157 0.1322: 0.0137 0.2887 0.0148

extremely expensive for the solution of multiset and EVM where subindexi belongs to the entire set of elementary
problems and, therefore, was not considered further in this study.reactions in the kinetic mechanism. Symbdl denotes the

On the other hand, significant reductions on the overall CPU preexponential factorAE,, the activation energyAE,;, the
time were obtained using the proposed simultaneous approachactivation volume, andP, the reactor pressure.
The computational results associated with the solution of the  Since the number of parameters is so large, it has been
corresponding large-scale NLPs are presented in Table 3. Thecommon in previous studies to make certain assumptions and
optimization problems were solved on a 3.0 GHz, 1 Gb RAM, decompose the estimation procedure into subproblems with fixed
Pentium IV PC. Since a good starting point is provided in all subsets of paramete¥8:2in these approaches, a first step is to
cases to the algorithm, a small initial barrier paramgtef 1 estimate the propagation and termination kinetic rate constants
x 10% was set for all calculations. In all cases, the model was to match the reactor overall conversion. The second step consists
initialized with the solution of the zone-by-zone simplified of estimating other kinetic parameters to match macromolecular
estimation strategy. In both cases, the Hessian matrix was foundproperties such as number- and weight-average molecular
to be positive definite at the solution with large eigenvalues weights, LCB, and polymer density. This iterative approach is
ranging from 1@ to 10'%. Since inertia correction was not repeated until the best set of parameters is obtained. This
necessary at the solution, we can conclude that the parameterapproach is obviously nonsystematic and time-consuming.
are unique. The NLPs are quite large with around 10000 The ideal approach to solving these complex parameter
constraints and 32 degrees of freedom (corresponding to theestimation problems is to include a large number of informative
entire set of on-line adjustable parameters). Nevertheless, thedata sets describing the operation of different reactors over wide
solution approach is fast and reliable, taking around 1.5 CPUs ranges of operating conditions, for homo- and copolymers, using
per iteration, compared to the 4.5 CPUs per iteration found by different CTAs, initiators, and producing grades with different
following the feasible path approach. The fast and reliable molecular and structural properties, and to estimate the whole
solutions obtained with the proposed method motivates the set of kinetic parameters in a single and very large parameter
solution of more complex parameter estimation problems which estimation problem. Furthermore, since on-line adjustable
are crucial for further development and on-line update of the parameters depend on the kinetic parameters, they need to be
first-principles reactor model. included in the estimation problem, giving rise to an even larger

In Table 4, we present the values of the on-line adjustable and more complicated problem.
parameters for the Grade A case and their corresponding 95% Following the all-at-once approach in this work, it is possible
confidence intervals. The confidence intervals were obtained to solve challenging multiset parameter estimation problems.
following standard methods that approximate the covariance This enables more efficient and systematic strategies to be
matrix using the reduced Hessian at the solution of the developed for the estimation of the kinetic parameters using
optimization problems? It is worth noticing that the initiator  industrial data.
efficiencies are adjustable factors that compensate for any-plant  5.2.1. Homopolymerization Case StudyAs a first step, we
model mismatch and, as a consequence, their actual values wilconsider the estimation of the kinetic parameters for homopoly-
depend on the values of the rest of the kinetic parameters inmerization reactions. The homopolymer grades are produced
the model, for example, the initiator decomposition rate on the same reactor operating over different ranges of temper-
constants. On the other hand, the values of the heat transfefature, pressure, and concentration of a single CTA. Common
coefficients are well in the range of typical observed values in values of the macromolecular properties for the different grades
industrial reactor8.Similar results were obtained for the Grade are used in this problem. For all the problems solved, the entire
B case; hence, the estimation procedure is consistent. set of on-line and kinetic parameters is estimated to match the

5.2. Estimation of Kinetic Parameters. The estimation reactor and jacket temperatures, overall reactor conversion,
approach presented in the previous section gives a robust ancthumber- and weight-average molecular weights, polymer den-
accurate match of the reactor temperature profile. Once thesity, and degree of long-chain branching (LCB).
model is able to match this profile, we can predict the reactor  The motivation behind the use of multiple data sets for the
conversion, the polymer macromolecular properties, and the final estimation of the kinetic parameters becomes clear from Figure
end-use properties such as the polymer density. Here, we also4. Here, two different 95% ellipsoidal confidence regions are
need to estimate parameters for the kinetic constants that applypresented for the propagation rate constignt) preexponential
to multiple data sets over different ranges of operating condi- factor and activation energy. The ellipsoids were obtained from
tions. The kinetic rate constants presented in Table 1 have thethe solution of estimation problems with one and three data sets.
following form It is clear that there is a large uncertainty associated with point

estimation of the preexponential factor that solves the single-

(48) set problem. However, a single set is informative enough to

AE, + PAE,
have a tight confidence interval for the activation energy since

(=Kex]- 0T
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1500 r ' r r ' ' r — remains consistent among the different problems and in a range
typical of interior-point methods. The sparsity pattern of the
linear system (43) is almost unaltered between formulations.
This might explain the similar computational times required by
the algorithm despite the increase in the degrees of freedom.
500 ] The availability of exact first and second order derivative
information is also crucial. The largest estimation problem was
solved in less than 20 min on a 3.0 GHz, 1 Gb RAM, Pentium
IV PC. Problems with more data sets were not solved due to
limitations in memory requirements associated with the storage
-s00f- 1 of the large and relatively sparse iteration matrix. Furthermore,
it was decided to solve the problems only with standard
computational resources. A fast and efficient approach to the
solution of problems with dozens of data sets aiming to
overcome this problem is described in the last section of the

1000 - q

(AEam 1—AEap1 1)
=)
T
1

-1000|- : B

B R e S R S B
o, K x10° For the parameter estimation, we assume the initiation and
Figure 4. Confidence regions for the parameters of the propagation rate Propagation rate constants to be equal. We also determined that
constantkys, results for problems with 1 and 3 data sets. the combined estimation of the initiator efficiencies and the
- ' initia;or decomposition rate constants leads to nonunique
solutions. Therefore, the decomposition rate parameters were

fixed and rate constants for termination by combination and
disproportionation were assumed to be equal. With these
assumptions, the obtained parameter values lie well between
reported rangésut the activation volumes for the propagation,
chain transfer to monomer, and backbiting reactions have
opposite signs to those usually reported. Also, fhscission
reaction rate parameters are not observable from the data. These
can be estimated only if information such as vinylenes and
vinylidenes content is included in the problem. Unfortunately,
this information was not available.

On the other hand, with the previous base set of parameters,
the model could not predict the effect of large variations of
pressure on the weight-average molecular weight. This effect
might be due to the polymerization mechanism itself or to

100
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=)

-100

150 ‘ ‘ ‘ ‘ . ‘ ‘ ‘ : . )
5000 4000 3000 -2000 -1000 O 000 2000 3000 4000 5000 physical phenomena (for instance, a decreased polymer solubil-
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-« . . . .
w1t ity in the gas phase) not considered by the model. With the
Figure 5. Confidence regions for the parameters of the propagation rate new set of estimated parameters, the model was able to predict

constantys, results for problems with 3 and 6 data sets. this pressure effect, and the estimated activation volumes are

every set describes the reactor behavior over a wide range ofS/€2ry compensating for this effect. _ _
temperature. In Figure 5, the confidence regions from the Finally, the model predictions were notably improved using
solution of problems having 3 and 6 data sets are presentedthe new set of parameters. This is clearly depicted in Figure 6
The ellipsoid obtained from the 6 sets problem is even smaller, Where plant and model predictions for the overall reactor
and the parameter estimates seem to have t|ght enougr—ponverSK)n, number- and Welght-average molecular WelghtS and
confidence intervals. degree of LCB are presented. Here, we consider a total of six
Multiset estimation pr0b|ems were solved using the standard estimation and elght validation cases inClUding different reactor
least-squares and EVM formulations. The reformulated model configurations and wide ranges of operating conditions. These
described in the previous section is used in these problems. Thedrades span a range of 387% on the overall reactor
computational results are presented in Table 5. The resultingconversion, 14 50619 500 g/gmol on the number-average
NLP size increases linearly with the number of data sets. For molecular weight, 150 066450 000 g/gmol on the weight-
the EVM formulation, we have many more degrees of freedom, average molecular weight, and 2.2.8 on the number of LCBs
which also increase linearly. Thus, for standard least-squares,Per 1000 carbon atoms. Average values of the deviations
we estimate 32 on-line adjustable parameters for each data sePetween the model predictions and the plant measurements for
along with 28 kinetic parameters; the heat of polymerization is different polymer properties are presented in Table 6. Here, we
estimated as well. For the EVM formulation, the degrees of Present model deviations using the base industrial set of kinetic
freedom for every set are increased by 52 input variables. In Parameters provided and the new parameters obtained in this
all cases, the estimation problems are initialized from a good Work. The predictions using the new set clearly outperform those
starting point using the optimal values of the on-line adjustable obtained using the base set in all cases.
parameters obtained in the previous section. Accordingly, an 5.2.2. Copolymerization Case StudySome of the polymer
initial barrier parametes was set to a small value of £ 1076 grades consist of LDPE copolymers of high molecular weight
for all the calculations. Other than this, the default algorithmic and low comonomer content. Using the optimal set of param-
parameters of the optimization algorithm were used. It is eters for the homopolymerization reactions, the next step is to
interesting to analyze the performance of the algorithm in the estimate the kinetic parameters for the rate constants of the
solution of these large-scale NLPs. The number of iterations copolymerization reactions. The best approach to solving this
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Table 5. Computational Results for Multiple-Set NLP Problems, Homopolymerization Case Study

data sets constraints DOF LB UB iterations CPUs NZJ NZH

3 33900 121 1246 1207 68 451.51 520 275 552 738
3 (EVM) 33952 277 1366 1327 57 345.82 520 636 553 080
6 68 421 217 2467 2389 58 900.21 1058412 1119 258
6 (EVM) 68 627 529 2653 2575 71 1010.74 1059512 1119780

aLB = number of lower bounds; UB- number of upper bounds; NZ number of nonzeros in Jacobian; NZ-Hnumber of nonzeros in Hessian; DOF
= degrees of freedom.

x10* Table 6. Average Deviations between Plant and Model Predictions

40 35 ) h
for Reactor Conversion and Grade Macromolecular Propertied

° parameter  conversion MW, MW,y LCB density
set (%) (%) (%) (%) (%)

base 1.49 23.24 18.58 19.20 0.0965
e pOn new 0.12 6.20 3.31 6.27 0.0875

Predicted Conversion [%]
Predicted Mwn [g/gmol]

a o This ok B o aResults for 14 different grades, homopolymerization case study.
°

w
=]

e 20 ; 25 kinetic parameters for the backbiting rate constaptand the
Plant Conversion [%] Plant Mwn [glgmol]  1q¢ heat of polymerizationAH,,, do not seem to have a strong effect
<10° on the model. We also note that the model is limited in the
prediction of the degree of LCB for the copolymer grades. This
LI is due to the fact that our base kinetic mechanism assumes that
% "n the addition of copolymer does not have a strong effect on the
o chain transfer to polymer reactions. Unfortunately, the assump-
: go "% tion cannot be corroborated since the related kinetic parameters
o B o cannot be estimated reliably using the data provided, as
- discussed previously.
1 5 % 4 Nevertheless, as in the homopolymerization case, the model
Plant Mwwg/gmol] -y 1o° Plant LCB predictions were notably improved for the copolymerization case
Figure 6. Homopolymer grade macromolecular properties, plant and model as well. This can be noted from Figure 7. In this case, three
predictions. estimation and three validation sets were considered. The grades
) . ... span a range of 3337% on the overall reactor conversion,
problem _woulq be to consider a large multiset estimation 55 090-29 000 on the number-average molecular weight,
problem including both homo- and copolymer grades to estimate 544 903-350 000 on the weight-average molecular weight,

the whole set of kinetic parameters. queyer, the optimi;atipn 2.9-3.6 on the number of LCBs per 1000 carbon atoms, and
problems resulting from the copolymerization cases are signifi- 5_got o1 the copolymer composition. Improved predictions

cantly more expensive to solve. were obtained over the full range of the polymer properties using
The estimation of the copolymerization kinetic parameters 1o new set of kinetic parameters. In Table 8, the average

was performed with a three data set estimation problem. Only yeiations of the polymer properties and the overall reactor
the parameters corresponding to the copolymerization reactions

. o -~ Pconversion are presented. Again, the model predictions with the
were estimated; the homopolymerization parameters were fixed o\, set of parameters outperform those obtained using the base
at their optimal values. The copolymer grades data sets are nofgq; provided from industry.
highly informative since these grades are produced under limited
ranges of operating conditions and the resulting polymer
properties are quite similar. Therefore, even if many data sets
could be handled in a single problem to estimate the whole set We propose a simultaneous, or all-at-once, approach for the
of kinetic parameters, there would not be a significant reduction solution of large-scale DAE-constrained parameter estimation
in the parameter confidence intervals. Table 7 summarizes theproblems. The estimation problems arise from model develop-
computational results for the solution of the standard least- ment and on-line estimation tasks of first-principles models for
squares and EVM problem. A total of 32 on-line adjustable LDPE reactors. The solution strategy allows the robust and
parameters was estimated for every data set along with 22 kineticefficient solution of large multiset parameter estimation prob-
parameters. Both problems were solved in a similar number of lems with up to 200 parameters. Challenging parameter estima-
iterations. Interestingly, the algorithm required less CPU time tion strategies such as the errors-in-variables-measured (EVM)
for the EVM problem than the standard problem. Nevertheless, formulation can be handled in a straightforward manner under
a solution of these problems is more expensive than for this approach. Here, multiset EVM estimation problems with
homopolymerization due to it having more constraints and a up to 70 000 constraints and over 500 degrees of freedom can
denser structure for the Jacobian matrix. be solved quickly and efficiently with standard computational

For copolymerization, the resulting confidence intervals are resources. The use of robust and efficient large-scale nonlinear
not as tight as for the homopolymerization case. This can be programming algorithms is fundamental for the solution of the
attributed to the small number of sets used in the estimation associated large-scale NLP problems. Following the systematic
problem or to a lack of informative data. The three grades used estimation strategy, reliable parameter estimates could be
in the estimation are obtained at a similar reactor pressure, soestimated directly from industrial plant data using the rigorous
there is a large uncertainty associated with the activation reactor model. Also, notable improvements in the model
volumes for the different rate constants. The chain transfer to predictions were found using the estimated parameters.
monomer and comonomer rate constagts; andksmzz cannot There is a natural motivation to solve estimation problems
be estimated reliably using the data provided. Furthermore, thewith as much informative data as possible, in order to find more

Predicted Mww [g/gmol]
[=]
Predicted LCB
L]
[ ]
[ ]

1

6. Conclusions and Future Work
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Table 7. Computational Results for Multiple-Set NLP Problems, Copolymerization Case Study

data sets constraints DOF LB UB iterations CPUs NZJ NZH
3 35 868 118 1249 1210 89 1008.75 636 891 657 880
3 (EVM) 35973 289 1351 1312 84 751.14 637 467 658 150

aLB = number of lower bounds; UB- number of upper bounds; NZ3 number of nonzeros in Jacobian; NZHnumber of nonzeros in Hessian; DOF
= degrees of freedom.

” 55210 linear algebra strategies, thus allowing the solution of challeng-
- a _ ing large-scale optimization problems with exploitable structures
% o g such as the particular ones arising from parameter estimgtion.
: 2 e <. The application of this approach will be the subject of a future
s 2 D study.

g ° =] ?g [ ]
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55X10° s for the solution of large-scale optimization problems.
= L] .
E» o . Notation
E e % . A = reactor cross-sectional area? m
3 o - o o C; = molar concentration ofth component, kgmol/fh
3 a = o e = Cp = reacting mixture heat capacity, kJ/kg
8 a : :
* o Cyc = cooling agent heat capacity, kJ/kg
3, 35 % 5 D; = reactor internal diameter, m
Plant Mww [g/gmol] , 4o° Plant LCB D, s = concentration of dead polymer chains witlmonomer

units ands comonomer units, kmol/fn
Figure 7. Copolymer grade macromolecular properties, plant and model Fj = molar flow rate of thgth component, kgmol/s

predictions. Fc = cooling agent flow rate, kg/s
Table 8. Average Deviations between Plant and Model Predictions fr = Fanning friction factor
for Reactor Conversion and Grade Macromolecular Propertied HTC = heat transfer coefficient, kW/AK
parameter conversion MW, MW, LCB density ksi = intramolecular (backbiting) chain transfer of live polymer
set (%) (%) (%) (%) (%) chains of typd, 1/s
base 203 24.48 6.13 26.40 0.262 ks = decomposition rate constant of tfé initiator, 1/s
new 0.37 8.29 1.83 16.64 0.095 ki = initiation rate constant for thegh monomer, rfigmol-s

kimij = rate constant for the transfer of live polymer chains of
typei to thej monomer, rigmol-s

reliable parameter estimates. However, beyond the problemski = rate constant for the transfer of dead polymer chains of
addressed here, there is a limitation in both memory and cPU  tyPei to thej monomer, rgmolk-s , _
time requirements for the solution of highly complex multiset Kei = Propagation rate constant for the live polymer chains
estimation problems, using current standard computational €Nding in theith monomer unit with thgth monomer, ¥/

resources. These limitations can be overcome through special- 9moFs _ _
ized decomposition strategisthat are able to exploit the Ksi = rate constant for transfer of live polymer chains of type

aResults for 6 different grades, copolymerization case study.

structure of the parameter estimation problems<33p). For i to chain-transfer ageft m*gmots _
instance, recalling the EVM problem formulation, two different Ksii = rate constant gor incorporation of CTAo live polymer
sets of variables can be identified. The first set affectly a chains of type, m*¥/gmols

particular data sek (p; anduy;). These variables include the ~ kej = termination by combination rate constanty/gmots
initiator efficiencies, the heat transfer coefficients, and the input kaj = termination by disproportionation rate constant/gmol
variables for the given data set. The second set of variables, S
i.e., the kinetic parameters, appear in the constraints of all the ksi = S-scission rate constant for secondary radicals, 1/s
data setsI{). This means that the only complicating variables ksi= f-scission rate constant for tertiary radicals, 1/s
between the entire set of constraints in the optimization problem LCB = number of long-chain branches per 1000 carbon atoms
is the small subset of variablék Therefore, the resulting NLP MW, = number-average molecular weight, kg/kgmol
problem obtained from the discretization of the parameter MW,, = weight-average molecular weight, kg/kgmol
estimation problem can be viewed as a multiscenario optimiza- MWo = molecular weight of a building unit, kg/kgmol
tion problen?® These problems give rise to a very particular Ny = number of initiators
and well-defined arrowhead or block-bordered diagonal structure Ns = number of chain-transfer agent(s)
of the linear system (43). A straightforward decomposition P = reactor pressure, atm
strategy can be applied to this system, leading to the serial orR; = total concentration of live polymer chains ending in a
parallel solution of smaller linear systems corresponding to each  radical of typei, kgmol/n?
data set and, thus, overcoming memory and CPU time limita- SCB= number of short-chain branches per 1000 carbon atoms
tions. T = reactor temperature, K

Finally, a recent object-oriented re-implementation of IPOPT T, = cooling agent temperature, K
permits a flexible environment for the implementation of tailored » = fluid velocity, m/s
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Greek Letters

—AH,; = heat of reaction for th&h monomer, kJ/kgmol

n; = efficiency of theith initiator in the mixture

X, = nth order single moment of the live polymer chains of
typei, kgmol/m?

un = nth order single moment of the dead polymer chains,
kgmol/n?

pm = reacting mixture density, kgfn

ppol = polymer density, g/cfh

Subscripts

li = ith initiator

Si = ith chain-transfer agent
mi = ith monomer

R = primary radicals
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